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Abstract

A formal statement of object model concepts is developed from simple mathematical

structures. A “type” is defined as an ordered pair comprising type name and type declaration; a type

declaration includes specifications of interface, design, heredity, and behavior. An “object system” is

then defined as a deterministic finite automaton (DFA) specified in terms of a given “viable type”

(viable types being a defined subset of types). Definitions of “object” and “class” are then developed,

and such other topics as containment, message passing, inheritance (both static and dynamic),

polymorphism, and persistence are discussed in this context.

Index terms: classes, finite automata, inheritance, objects, polymorphism, theory, types

Introduction

The success of object-oriented software development will be measured, in the long run, by the

degree to which it reduces the net cost of developing and sustaining operational software. Those cost

savings will vary with the readiness and succcss with which developers adopt the technology. This

suggests that the concepts that the technology rests on ought to be easily understandable by as large

and general a developer population as possible. If we want the concepts to bc easily understandable,



.

then we need to state them clearly in familiar terms. The challenge is less to our inventiveness than

to our communication skills,

Although there is now widespread and growing industry acceptance of software development

on the object model, there is as yet no unambiguous and universally accepted manifesto of just what

that model is [1], Thoughtful efforts to define object soflware concepts abound (examples include [2]

and [3] among many), but most are to some degree handicapped by the imprecision and ambiguity of

the English language. A more rigorous treatment is found in [4], but even these formulations stop

short of a comprehensive mathematical statement of the object model.

In this paper we attempt such a statement, constructed from the simplest elements of computa-

tion theory, Our ultimate aim is the assembly of a mathcmatica]~y  sound theoretical framework within

which the key concepts of object-oriented analysis, design, and programming can be articulated. This

framework could provide a basis for examining and evaluating object software development practices,

languages, and methodologies, and perhaps for devising new ones.

Very briefly, we suggest that an object system (or “object-oriented program”, or

“object-oriented application”) is simply a deterministic finite automaton (DFA) that is specified in

somewhat more detail than classical DFAs and is at the same time subject to certain constraints, as

discussed later.

Definitions of object  model concepts should generally satisfy two criteria: clarity and

familiarity. The formalism of the statement offered here is intended to assure its clarity, or at least

minimize its ambiguity, while the statement’s specific elements (some of which may seem arbitrary)

are designed to yield as few surprises as possible in the resulting model. We are in fact striving for

familiarity on several levels:

The theory, based as it is on fundamental mathematical structures, will be
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accessible to the undergraduate computer science student.

The formal representations of object model concepts are generally (though not

always) consistent with the prevailing implementations of object technology.

Moreover, wc intend those representations to be as consistent as possible with

analogous “real world” concepts that are identified by the same words.

This third point ought to be amplified somewhat. Most software developers know little about conqmt-

cr science. (Accountants who build spreadsheets are, after all, software developers.) But all software

dcvclopcrs  inhabit a common “real world” in which the concepts whose names have been borrowed

for the object model -- class, object, message -- already have familiar meanings. Any program can be

regarded as a model of some aspect of that real world, Object model concepts should enable us to

discuss a program in terms that are closely analogous to those that characterize the real world system

it models. If we want those concepts to be easily and accurately grasped, then we must discipline

ourselves to use familiar words in familiar ways (in preference, where conflicls  arise, to the ways in

which they may be used in object technology as currently implemented). We believe it is a waste of

cognitive leverage to stray any further from common sense than absolutely necessary.

Foundations

A DFA is fully specified by an ordered quintuple (K, Z, &s, F) where K is a finite set of states;

X is an alphabet; s E K is the initial state; F G K is the set of final states; and 5 is a function from K x

X to K [5]. We extend the canonical notion of DFA in two fundamental ways:

1. Rather than simply name the states in K, we describe them exhaustively, enumerating

the “elements” of each state. While it remains true that a DFA merely negotiates

transitions from one state in K to another in response to input symbols, each state in K
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has semantic significance that extends far beyond its name.

2. Rather than look to the final state of the DFA to learn whether or not a string of input

is a member of a regular language, we set F = K to ensure that all strings of input arc

accepted and instead suppose that the state transitions themselves can do useful things

for us. For example, an element of a DFA’s state might control the operat ion of a

physical device (much as a hypothetical physical “tape drive” controls the delivery of

input symbols to the DFA).

For convenience, we define a new binary operation on sets whose members are all sets. The

Carfcsian union of A and B where both A and B are sets of sets, denoted by A # B, is the set of all sets

formed by the union of one member of A with one member of B. That is, A # B = { a u b : a E A, b

E B}. If S is any set of N sets of sets, we can write #S for the set of all possible sets formed by the

union of N sets Pi such that each Pi is a member of some member of S, yet no two P is are members of

the same member of S. (An invest igat ion of # operations on sets whose members are not all sets is

beyond the scope of this paper.)

Let x be an alphabet. This alphabet wil

elements of a DFA’s state. Let language A be a,

be used in denoting the names and values of the

~ set of strings over x, including the empty string

e and the strings d, which we read as “datum”; m, which we read as “method”; a, read as “argument”;

r, read as “result”; ands, read as “method stack”. I.et A’ c A bc a set of strings, d = A’.

Wc define z as the ordered pair (IT, (E7, IT, NT, Dl, I+ AT, Q) where 17 = d, ET = $ (the empty

set), 17 = @, NT = $, D1 = $, Lt = $, AT = $, and Z~ = ~. Then we define X, the set of all types, as a

function X:A’ + R where R is the set of all [ype declarations. Each member of X is an ordered pair

(Ix, (Ex, Ix, Nx, Dx, Lx, Ax, ZX)) where Ix, called the label of the type, is a member of A’ and (Ex, lx,

Nx, Dx, LX, Ax, Zx) is a type declaration defined as follows:
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● Ex, called the characteristic method list of the type, is a subset of A such that e @ Nx.

● lx, the characteristic infer-ice of X, is a function from 13x to T x T where T is the set of

all viable fypes. (We define “viable type” later; for now, we note only that T c X.) lx is thus

a set of ordered pairs (m, (T,, Tr)) such that m E Ex is the name of a method, T~ is the type of

the method’s argument, and T, is the type of the method’s result. lx in effect characterizes all

the methods X is capable of executing.

The definition of lx enables us to define two other terms that will bc useful later:

The argument parameter type set of X, denoted by APX, is defined by

APX ={T : (m, (T, T,))= lx}.

The result parameler  type sef of X, denoted by RPX, is defined by RPx

= {T : (m, (T., T)) ● IX}.

● Nx, called the characteristic name space of X, is a subset of A constrained as follows:

a.e@Nx

b. No member of Nx may ever have m, a, r, ors as a prefix.

● Dx, called  the characferislic  design of the type, is a function Dx: Nx + T. Each n~cnl-

ber of function Dx, called an atlribzde, is an ordered pair (n, T) where T is a viable type and n,

the nanze  of the attribute, is a string n ● Nx.

The definition of Dx gives us a basis for defining some additional terms:

The implicit design  of X, denoted by Ax, is defined as follows:

If X = ~, then Ax = $.

Otherwise, Ax= Dx u{ (m, z), (s, ‘c)} u { (al~, T) : T = APX }U

{ (rll, T) : T = RPx }. [ah is the string formed by concatenating the
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string a (“argument”) with the label of class T, which is also a string. AT

is formed similarly.]

The implicit design of a type includes all elements of the type’s

characteristic design together with those attributes that are implicitly

involved in the behavior specified by the type: method, method stack,

and all “argument” and “result” attributes alluded to in the type’s

interface.

The charac/eris/ic dominion of X, denoted by Gx, is defined as follows:

If X = z, then Gx = ~.

Otherwise, Gx = {n : (n, ~) = Ax} -- that is, the names of all

members of X’s implicit design that are of type ~,

The characleris~ic  sfale space of X, denoted by Kx, is defined as follows:

If X = T, then Kx = $.

Otherwise, Kx=(#{B:  13=nx  A,n = Gx - {m}} )#(nIXEx})

-- that is, the Cartesian union of all Cartesian products obtained by

crossing the names in the characteristic method list of X with the name

m, and the language A with all other members of X‘s characteristic

dominion.

The qualified name space of an attribute (n, T) in a characteristic design llX,

denoted by R(n, ~), is defined as follows:

If T = t, then R(n, T) = $.

Otherwise, R(n, ~, = { nw : w e N1 ) where NT is the aggrcgafe
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name space of T, which we will define shortly.

In other words, wc get the qualified name space of an attribute

by prepending the attribute’s name to all the names in the aggregate

name space of the attribute’s type.

The qualified design of an attribute (n, T) in a characteristic design Dx, denoted

by Q(., 1), is defined as fo]lows:

If T = z, then Q(.> ~, = @

Otherwise, Q(,,, ~, = { (nw, U) : (w, U) ~ D~ } where 11~ is the

aggregule  design of T, which, again, we will define shortly.

That is, we get the qualified design of an attribute by prepcnding

the attribute’s name to the names of all attributes in the aggregate design

of that attribute’s type.

● Lx, called the linkage of the type, is defined by LX G {(p, q) :p e ({n : (n, T) = Dx}

U{nlnz:  (nl, U) = Dx, (w T) E h,)),q E {nlm: (n], W E Dx, (m T) E Av, nz I= {VI, ~JIT,

rlT} }subject  to the following constraints:

a. If (pi, qi) = Lx then (pj, qi) # 1.x for all Pj # pi ad (pi, qj) @ LX for all qj # qi.

That is, no two p’s maybe linked to the same q, and no p may be linked to more than

one q.

b. If (n2, nlal~)  6 Lx where (n2, T) = Dx, then (n3, nlm) ~ I.x for some (n3, z) e

D x. Likewise, if (n4n2, nlall) E Lx where (n4, U) e Dx and (n2, T) ~ I>cJ, then (n4n3,

nlrn) E Lx for some (n3, T) G Du. In short, whenever any attribute in a given design is

linked to any “argument” of some other element of that design, a third attribute (of type

T) in the same design must be linked to the “method” of that element.
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In other words, any attribute in the characteristic (not implicit) design of type X maybe linked

to the method or any argument or result  attribute ~f & _ lYPE in the inlp]icit deskw Of any

non-~ attribute of X, as may any attribute in the characteristic design of any non-~ attribute of

X, As we explain later, linkage provides the mechanism for communication between pairs of

objects in an object system.

The definition of l.X gives us a basis for an additional definition:

The qualijied linkage of an attribute (n, 1’) in a characteristic design Dx, denot-

ed by J(n, T), is defined as follows:

If T = ~, then J(., ~, = $.

Otherwise, J(n, ~, = { (rip, nq) : (p, q) = L~ ] where I.~ is the

aggrega~e linkage of T, which we wil 1 define soon.

In a by-now familiar fashion, we get the qualified linkage of an

attribute by prepending the attribute’s name to all the names in the

aggregate linkage of the attribute’s type.

● Ax, called the characteristic ancestry of the type, is a set of zero or more sets called

ancestors; each ancestor is a set of one or more types, referred to as personae. The ancestry of

X enumerates those types of which X can be considered a refinement or qualification, and from

which X can be said to “inherit” capability and behavior.

Ax is constrained in several ways, one of which must be stated before we go on: al

the personae of any ancestor must have identical characteristic method list, interface, and

of

ancestry. The characteristic method list common to all members of an ancestor H (the common

method list of H) is denoted by CE1l. The characteristic interface common to all members of

an ancestor H (the common  inferface  of H) is denoted by CIH. The characteristic ancestry
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common  to all members of an ancestor H (the common  unceslry of H) is denoted by CA11.

The definition of Ax gives us a basis for further definitions:

The aggregalc  commm ancestry of an ancestor H, denoted by CA II, is

defined by (u {CAY: Y G CA~l  }) u { CA1l }. That is, the aggregate common

ancestry of an ancestor H (which is a set oft ypcs) contains H‘s own common

ancestry and the aggregate common ancestries of all members of that common

ancestry. Note that I CA}l  I might not be equal to I CA}+  I + the sum of I CAY

I over all Y G CAII because two or more members of CA}] might have a

common ancestor. By taking the union of aggregate ancestries we eliminate

redundant ancestors.

The aggregu[e ances~ry of X, denoted by Ax, is defined as Ax = CA(X 1.

We get the aggregate ancestry of type X, in other words, by considering {X} as

an ancestor and computing that set’s aggregate common ancestry. Like Ax, Ax

is a set of zero or more different sets of types, each characterized by an

interface.

In similar fashion, the aggregate common method list of an ancestor H,

denoted by CEII, is defined by (u { CIIY: Y ● CA}i }) u { CE}l}  and the aggre-

gate method Iis? of X, denoted by lCx, is defined as llX = CE{X);  the aggregule

common interface of an ancestor H, denoted by CIH, is defined by (u { CIY: Y

● CAH } ) u { CIH ) and the aggregate interface of X, denoted by lx, is defined

as Ix= Cl{x).

The characteristic personality of X -- the set of all types cited in the

characteristic ancestry of X, denoted by Px -- is defined as Px = UAX.
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The aggregate personality of X, denoted by Px, is defined as 1)X= (u

{Py : Y E Px }) u {X ). That is, the aggregate personality of X contains X itself

and the aggregate personality ics of al 1 members of I’x, Note that I Px \ might not

be equal to 1 + the sum of I Py I over all Y ~ Px because two or more members

of Px might have the same ancestor. By taking the union of aggregate personal-

ities wc eliminate redundant types in the aggregate personality of X,

The aggregale  name space of X, denoted by Nx, is defined by Nx = u {s

: s = (u{R(n, ~, : (n, T) e DY} u Ny), Y = Px). That is, the aggregate name

space of a type X is the union, over all members Y of Px, of the characteristic

name space of Y together with the qualified name spaces of all attributes in the

characteristic design of Y.

The aggregate design of X, denoted by IJx, is defined by llX = u{s : s

= (u{Q(n, T, : (n, T) = Ay} u Ay), Y ● Px}. That is, the aggregate design of a

type X is the union, over all members Y of Px, of the implicit design of Y

together with the qualified designs of all attributes in Y’s implicit design.

The aggregale  s[a~e space of X, denoted by Kx, is defined as:

Kx=#{13:  B=nx A,(n, ~)~  I]x}

-- that is, the Carlesian  union of the Cartesian products obtained by crossing

the language A with the fully qualified names of all attributes of type ~ in the

aggregate design of X. Each member of the aggregate state space of type X --

each stale of X -- is a set of ordered pairs (n, v) where n is a fully qualified name

and v is a “value” -- a string -- selected from A. Each such ordered pair in any

such state is called an elemwl  of that state.
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The aggregate  linkage  of X, denoted by l.X, is defined by I.x = U{s : s

= (U{J(~, ~, : (n, T) G AY) u I.Y), Y = Px}. That is, the aggregate linkage of a

type X is the union, over all nlen~bcrs Y of Px, of the characteristic linkage of

Y together with the qualified linkages of all attributes in the implicit design of

Y,

The contradic(im  set of a state k = Kx, denoted by Ck, is defined as:

Ck = {(n;, vi) : (n], vi) ● k, (ni, nj) E l~x, (nj, Vj) G k, vi # Vj} .

(Non-null contradiction sets occur when conflicting values for two equivalent

[linked] attributes result from the Cartesian union of the Cartesian products of

the two attributes.)

The resolved  stafc space of X, denoted by px, is defined as:

px={k:ke  Kx, Ck=$} .

The resolved state space of X is thus the set of all possible stales of X that

contain no contradictions resulting from linkage.

The cwrent method of a given state k e px, denoted by ck, is the value

of that member of k whose fully qualified name is m.

For now, in the interest of brevity and clarity, wc constrain ancestors as follows: no

ancestor may have more than one persona. (Multiplicity of personae will eventually enable us

to develop a theoretical framework for such concepts as fuzzy and dynamic inheritance, but it

adds considerable complexity to the model. We therefore defer discussion of this topic until a

later paper, though we do hint at it later in this one.) Ax is further constrained as follows:

a. For all Y E Px: X @ Py and for all (n, T) E Dy, T # X. That is, X must

not be a member of the aggregate personality of any member of its own charac-
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teristic  personality, and no attribute of type X maybe a member of the

aggregate design of any member of X‘s characteristic personality y.

b, For all (n, T) ● llX: T # X and for all Y = P~, X @ Py. No attribute of

type X maybe a member of X‘s aggregate design, and X must not be a member

of the aggregate personality of any member of X’s aggregate design.

c. Nx G A (and therefore Nx must be finite).

d. I NX I must be equal to the sum of ( I Ny I plus the sum of I R(n, ~, I over

all (n, T) ● Dy), over all Y = Px. That is, the sets of qualified attribute names

contributed by all members of the aggregate personality of X must be disjoint.

e. I Itx I must be equal to I 13x \ + the sum of I CEII I over all H ● Ax. I.e.,

the method lists of all of X’s ancestors and of X itself must be disjoint.

● Zx, the characteristic transition function of the type X, is a function Zx: Kx x X + #{B:

B = n x A, n e Gx }. Every member t c Zx, called a transition  in Zx, is an ordered pair ((j, b),

k) where j ● Kx -- i.e., is a state of X [a set of (name, string) ordered pairs] in which m ~ Ex

-- and b ● X, and k is a member of a state space that is identical to Kx except that in its

members m can have any value whatsoever (selected from A). Note that this means that a

transition in Zx can result in a state that is outside the characteristic state space of X, i.e., one

to which X’s characteristic transition function cannot be applied.

The members ((j, b), k) of Zx are constrained as follows:

a. Given (n], T) ● Dx, T # ~, and (n2, ~) = Dx and (n2, nlad)  ● Lx [in~ply-

ing, by the constraints on Lx, that (n3, nlm) e Lx] and (n2, w]) = j and (n3, W2)

● j: if w2 # e then (n2, WI) = k and (n3, W2) ● k. That is, the values of attributes

linked either to the method or to any argument of type z of some other attribute
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cannot change unless that attribute’s method is null,

b. If (n], T) ~ Dx, T # z, and (n2, ~) ~ Dx and (n2, nlrd) ~ Lx and (nz, Wl)

~ j then (n2, w]) ● k. (No transition may specify a change in the value of an

attribute linked to any result of type T of another attribute,)

From this definition of Zx we can develop three additional concepts:

The qualified transition function of an attribute (n, T) in a design Dx, denoted

by M(n, ~), is defined as follows:

If T = z, then M(n,7) = $.

Otherwise, M(n, ~)= {(Q, b), k) : j = {(nnl,  WI) : (n], WI) E .jV}, k

= {(nnz, w2): (m, WJ G kw}, ((jN, b), kP) ● PT} where pl is the resolved

transition fhnction  of T, defined below.

informally, wc get the qualified transition function of an

attribute by prepending the attribute’s name to the attribute names of the

elements of the “before” and “after” states of each transition in the

resolved transition function of the attribute’s type.

The aggregate tra~zsitiolzfi~lzctiolz  of type X, denoted by Zx, is defined by:

Zx={((j,  b), k):j=px, b~Z, k=

u {M(~,l)({(n,  V) : (n, V) E j, (n, ~) E Q(g,~J},b):  (% T) G U{DV

:V~Px},  T#t}

u Zx({(n, v) : (n, v) ~ j, n = Gy where Y is the member of Px

such that cj = EY}, b)

u {(n, v) : (n, v) ● j, n = Gw where W is ~ the member of Px
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such thai cj ~ EY, and n @ GY where Y is the

member of Px such that Cj ● EY }.

Put another way, each transition in function Zx is from a state j to a state

k which is identical to j except that:

a. If the current method of j is a member of the characteris-

tic method list of any type Y in X’s aggregate personality, then

the values of all members of the characteristic dominion of Y are

modified according to Y’s characteristic transition function.

b. The values of all state elements that are not in the aggre-

gate dominion of X (that is, whose names are the names of

attributes of type other than ~ in the characteristic designs of

members of X‘s aggregate personality) are modified according

to the qualified transition functions of the associated types. For

each such design member, the qualified transition function is

exercised on the set of all state e]emcnts  in j whose names are

those of attributes of type ~ in the qualified design corresponding

to that function.

The resolved Iransilion  flmction  of a type X, denoted by px, is a transformat  ion

of X’s aggregate transition function that resolves possible conflicts arising from

the aggregate linkage of X:

For each ((j, b), k) in Zx:

For each (n2, nlm) = I.x:
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Clearly both (n2, W2) c k and (nlm, Wl) = k.

Since n2 and nlm are equivalent, (nz, Wz) and (nlm, w])

must agree,

(Moreover, if (n3, nlmi) ~ Lx then (n3, W3) e k and

(nlad, Wd) e k, and (n3, W3) and (nlad, Wo) must agree,)

If w] = c, then wc replace (nlm, WI) ink with (nlm, W2);

also, if (n3, nlad) = I.x, we replace (nlad, W4) with

(nlad, W3) in k.

Otherwise, we replace (n2, W2) in k with (nz, WI); if (ns,

nlad) ~ l.X, we replace (n3, W3) with (n3, W4) in k.

For each (n2, nlrd) e J,x:

Clearly both (n2, W2) = k and (nlrcl, w]) e k.

Since n2 and nlrd  arc equivalent, (n2, W2) and (nlrd, Wl)

must agree.

Therefore we replace (n2, W2) with (n2, w 1 ) in k.

In essence, whenever the “target” attribute is active -- has non-null method -- its

type’s transition function prevails over X’s transition function (which, as it is

constrained, couldn’t effect any change in the method or argument or result of

the attribute anyway), At other times (when, again, the constraints on

characteristic transition functions preclude any change in any data of the target

attribute), X’s transition function prevails .

With the set of all types defined, we can define T, the set of all viable types, as T= {X : X G X,
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{k : ((j, b), k) = px, c~ @ (Ex u {e})} = $). That is, a viable type is one whose resolved transition

function never puts it into a state in which its current method is neither e nor one of the members of its

aggregate method list. Because V7 = $, t is trivially a viable type.

that s

We can now define an objecl  system of type T, where T e 1, as any DFA (p~, X, p~, s, pT) such

= PT.

Given an object system of type T and a name n such that (n, X) = DT, we define the object

named by H, denoted by gn, as { nw : w c A, nw = NT}. We say that the name of gn is n and that the

type of g. is X (i.e., that gn is an object of type X or, informally, that n is an object of type X).

Given any state k ~ pT of this object system, the state of object gn when the system is in that

state is defined as {(ni, vi) : (n i, vi) = k, ni = gn}. The behavior of object g. is {((j, b), k) : ((j, b), k) =

pl, (rim, w) = j, w # e }, the set of all state transitions in the resolved transition function of T such that

the value of the state element corresponding to the method of object gn in the initial state is not the null

string.

If the names of objects gA and g~ are the names of two members of the characteristic (not

aggregate) design of T, then gA and g~ are each other’s peers; if gA is an object of type U and objects

gl) and gl~ correspond to members D and E of the characteristic design of U, then g~ and g~ are

immediately contained in gA (gA is their immediate container) and they are each other’s peers, but

neither is a peer of either gA or g~.

Finally, given an object system of type T and a type X, we define the class of X (Cx, or “the

class X“) as the set of all objects g. of any type U such that X = Pu. The behavior of each such object

will include the behavior of objects of type X, since the aggregate method list of any U is a supcrset  of

the characteristic method list of X, and therefore the aggregate transition function of lJ will behave

according to X‘s characteristic transition function whenever the current method is one defined in X‘s
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characteristic method list. A class Cw is a subclass of class Cx if and on] y if every member of Cw is

also a member of Cx -- i.e., Cw G Cx -- or, equivalently, X e I’w.

Examples

Suppose we stipulate that the symbol O (where O E Z) signifies “no meaningful input” or “end

of input string”. We could define a type “register” by (register, (E, 1, N, D, L, A, Z)) where:

E=

1=

{]Og,  dump}

(log, (I, ~)), (dump, (T, ~))}

N = {value)

D = { (value, T) }

1.=$

A=@

Z = {(({(value, w), (m, log), (ad, x), (d, y), (s, z)), a),

{(value, wa), (m, log), (ad, x), (rd, y), (s, z)}) : a = X, a # 0, w ~ A, x ● A, y ~ A, z ~

A)

U {((((value, w), (~m log), (a~j x), (r~j y), (s, ~)), a),

{(value, w), (m, c), (ad, x), (d, y), (s, z)}) : a =0, w e L, x ● L, y ● L, z = L}

u {(({(value, w), (~??, dump),  (ad, x), (r~, Y), (s, z)}, a),

{(value, e), (m, e), (ad, x), (rd, w), (s, z)}): a = X, w = L, x E L, y G L, z E L}

A register’s “log” method merely acquires and stores all input symbols until the O symbol,

appending them to its value, then stops. Its “dump” method copies its value to its result attribute and
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erases  the value.

For the next definition we rely on the natural isomorphism between the set of integers and the

set 1 of all symbolic representations of integers in a given alphabet (X in this case), 1 G A. Given this,

wc can define the type “integer” by (integer, (E, J, N, D, L, A, Z)) where:

E= {load, ?}

1 = {(load, (I, ~)), (?, (z, ~))]

N = { value }

D = { (value, ~) }

1.=($

A=$

Z = { {(({(value, w), (m, load), (ad, x), (rd, y), (s, z)}, a),

{(value, w), (m, e), (ad, e), (rd, e), (s, z))) : a = Z, w ● A, x ~ A, x @ 1, y = A, z ~ A]

u  {(({(value, w), (~~, load), (fl~, x), (r~, Y), (s, ~)}, a),

{(value, w), (m, e), (ad, e), (rd, x), (s, z)}): a = X, w ● A, x = 1, y ~ A, z e A}

U {(({(value, w), (nh ?), (a~, x), (r~, y), (s, ~)}, a),

{(value, w), (m, e), (ad, e), (d, w), (s, z)}) : a ~ Z, w e A, x ~ A, y e A, z ~ A}

An integer can receive a ncw value via its load method, but rejects all new values that are not

symbolic representations of integers; therefore its value is guaranteed at all times to be either the nul 1

string or the symbolic representation of an integer. It reports its current value when its ? method is

triggered.

Now we could define an additional type “number” that can hold integer values and add integer

values to them. For this definition wc assume that the strings +, 1, 2, and 3 are members of A, The
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definition might look like (number, (E, I, N, D, L, A, Z)) where:

E= {+)

1 = {(+, (integer, integer))}

N = { phase, integerVal  )

D = { (phase, ~), ((integerVal,  integer), (vmethod,  ~), (vmsult,  t), (amethod,  ~), (aresult, ~),

(rmethod,  ~), (rarg, ~) }

1.= { (vmethod,  intcgerValn~),  (vresult,  intcgcrValrd), (amethod,  aintcgerm),  (aresult,

aintegern$,  (rmcthod,  rintegerm), (rarg, rintegerad)  }

A=@

Z = { {(({(w, +), (vmethod,  p), (vresult,  q), (amethod,  r), (aresult, s), (rmethod,  t), (rarg, u),

(s, z), (phase, v)], a),

{(m, +), (vmethod,  p), (vresult,  q), (amcthod,  r), (arcsult,  s); (rmethod,  t), (rarg, u),

(s, z), (phase,  v)}) :p~A,  p#e, q~A, r~A, scA, t~A, u~A, z~A, v~A,

Vtz {1,2,3}}

. . wait until integerVal  is inactive

u {{(({ (n~> +)> (vmethod>  e)> (vresult)  q)> (amethod~  r)> (aresult) s)> (rmcthod>  t)> (rarg> u)!

(s, z), (phase, v)}, a),

{(m, +), (vmethod,  ?), (vresult,  q), (amethod,  r), (aresult,  s), (rmethod,  t), (rarg, u),

(s,z),(phase,l  )}): q~A, r~A, se A,te A,ue A,z~A, v@ { 1 , 2 , 3 ) }

.- thcn ask for the value of integerVal

u {{(({ (~lz) +)> (vmcthod~  ?)) (vres~llt>  q)! (anlcthod,  r), (aresult> s), (rmcthod,  t), (rarg, u),
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(s, z), (phase, 1)}, a),

{(m, +), (vmethod,  ?), (vresult,  q), (amethod,  r), (aresult,  s), (rmethod,  t), (rarg, u),

(s, z), (phase, l)}): q~A, reA, s~A, t~A, ueA, z~A]

-. wait until it’s delivered

u {{(({(m, +), (vmethod,  P), (vrcsult,  q), (anlethod,  r), (aresult,  s), (rmethod,  t), (rarg, u),

(s, 7.), (phase, 1)}, a),

{(m, +), (vmethod,  p), (vresult,  q), (amethod,  r), (aresult,  s), (rmethod,  t), (rarg, u),

(s, z), (phase, l)}): p~A, p#?, q=e, r~A, scA, teA, t#e, u~A, z~A}

-- if it’s null, wait until rintegcr  (the return value for the method) is inactive

u {{(({(WI>+), (vmethod,  P), (vresult,  q), (amethod,  r), (aresult,  s), (rmethod,  e), (rarg, u),

(s, z), (phase, l)), a),

{ (m, +), (vmcthod,  p), (vresult,  q), (amethod,  r), (aresult, s), (rmcthod,  load),

(rarg, e), (s, z), (phase,3)}):  p~A, p#?, q=e, reA, se A,u~A, z~A}

-- . ..and then put the null string into it...

u {{(({ (~n, +), (vmethod,  P), (vresult,  q), (amethod,  r), (aresult,  s), (rmethod,  load), (rarg, u),

(s, z), (phase, 3)), a),

{(m, +), (vmethod,  p), (vrcsult,  q), (amcthod,  r), (aresult,  s), (rmcthod,  load), (rarg, u),

(s, z), (phase,3)}):  psA, q= A,r~A, s~A, ueA, z~A}

--...wait until it’s accepted...

u {{(({(711, +), (vmethod,  P), (vresult)  q), (amcthod,  r), (aresult,  s), (rmethod,  t), (rarg, u),

(s, z), (phase, 3)}, a),
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{(m, e), (vmethod,  p), (vresult,  q), (amethod,  r), (aresult,  s), (rmethod,  t), (rarg, u),

(.$, z), (phase,  e)}): pGA, qGA, rEA, sEA, t~A, t#load,ll~A,  zeA}

--... and de-activate the number.

u { {(({(m, +), (vrncthod,  p), (vresult,  q), (amethod,  r), (aresult,  s), (rmethod,  t), (rarg, u),

(s, z), (phase, 1)}, a),

{(m, +), (vmethod,

(s, z), (phase, 1)}) :

ZGA}

p), (vresult,  q), (amethod,  r), (arcsult,  s), (rmethod,  t), (rarg,

p~A, p#?, q~A, q#e, r~A, r#c, s~A, t~A, u GA,

u),

--otherwise, wait until ainteger (the argument passed to the method) is inactive

u ( {(({(m, +),  (vmethod,  p), (vresult,  q), (amethod,  e), (aresult,  s), (rmethod,  t), (rarg, u),

(s, z), (phase, 1)}, a),

{(m, +), (vmethod,  p), (vresuh, q), (amethod,  ?), (aresult,  s), (rmethod,  t), (rarg, u),

(s, z), (phase,2))):  p~A, p#?, qEA, q#e, s~A, tEA, u~A, z~A}

--then ask for its value

u { {(({(m, +), (vmethod,  p), (vrcsult,  q), (amethod,  ?), (aresult,  s), (rmethod,  t), (rarg, u),

(s, z), (phase, 2)}, a),

{(m, +), (vmethod,  p), (vresult,  q), (amcthod,  ?), (aresult,  s), (rmethod,  t), (rarg, u),

(s, ~), (phase,2)}):  PGA, qeA, se A,t~A, u~A, z~A}

--wait until it’s delivered

u ( {(({(m, +),  (vmethod,  p), (vresult,  q), (amethod,  r), (aresult,  s), (rmethod,  t), (rarg, u),

(s, z), (phase, 2)}, a),
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--then wai

u

{(m, +), (vmethod,  p), (vresult,  q), (amethod, r), (aresult,  s), (rmethod,  t), (rarg, u),

(,s, z), (phase,2)}):  p~A, q~A, r~A, r#?, s~A, t~A, t#e, u~A, zeA}

until rintcger  (the return value for the method) is inactive

{ {(({(n?, +), (vmethod,  p), (vresult,  q), (amethod,  r), (aresult,  e), (rmethod,  e), (rarg, u),

(s, z), (phase, 2)}, a),

{(m, +), (vmethod,  p), (vresu]t, q), (amethod, r), (aresu]t, e), (rmethod, load),

(rarg, e), (s, z), (phase,3)})  : p~A, q~A, r~A, r#?, u~A, zeA)

.- if argument value is null, put the null string into it

--(thus entering same state as when intcgerVal  was the null string)

u { {(({(m, +), (vmethod,  p), (vresult,  q), (amethod,  r), (aresult,  s), (rmethod,  e), (rarg, u),

(s, z), (phase, 2)}, a),

{ (nz, +), (vmcthod,  p), (vresult,  q), (amethod,  r), (arcsult,  s), (rmethod,  load),

(rarg, q+s), (,~, z), (phase,3)}):  p~A, qeA, r~A, r#?, s~A, s#e,

--otherwise, put the sum of the value of integerVal  and the value of ainteger into it

--(again, entering same state as when integerVal  was the null string)

--(”q + S“ denotes  the symbolic representation of the sum of the two integers whose symbolic

representations are q and s)

]n greatly compressed form:

If m = “+”:

If phase= 1:
If vmethod  = ?
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No change in state.
El Se

If Vrcsult  = e
If rmethod  # e

No change in state.
I?] se

Change rmethod to load, rresult  to e, phase to 3.

Else
If amethod  # c

No change in state.

Else
Change amethod  to ?, phase to 2.

Else if phase= 2:
If arnethod = ?

No change in state.
Else

If rmethod  # e
No change in state.

Else
If arcsult = c

Change rmethod  to load, rresult  to e, phase to 3.
Else

Change rmcthod  to load, rresult to vresult  + aresult,
phase to 3,

Else if phase= 3:
If rmcthod  = load

No change in state.
Else

Change m to e, phase toe.
Else

If vmethod  # e
No change in state.

Else
Change vmethod  to ?, phase to 1.

A number is passed an integer, rather than string, argument.

is a three-phase process, as indicated by the values that the “phase”

Addition of an integer to a number

attribute of the type can assume in

performing an addition. First the number uses the ? method of its own integerVal  attribute (also an

integer) to obtain that value; then it uses the ? method of the argument to obtain the value of the



argument; finally i[ uses the load method of the integer result in its interface to load the sum of these

two values into that result. When either operand is the null string, the result is the null string indicating

an error. No other checking for operand validity is necessary because the operands are both

guaranteed to be valid integers if not null. The encapsulation of the operands is never compromised.

The phase attribute can be thought of as the name of an internal function that is called from

within the execution of the method. All methods are public, but such mechanisms as phase attributes

can be used to privately modularize processing that might be common to multiple methods or to

multiple phases of the execution of a single method.

A number could have additional value attributes of other numeric types, such as real and

imaginary, and could have additional interface elements for adding different types of numbers -- and

for performing other arithmetic operations such as assignment, subtraction, etc. where the operands

could be of any combination of types. The methods of number could determine which argument and

which of its own values to use in a given computation by looking for the ones with non-e value. (E.g.,

non-e values for both real and imaginary attributes would signify a complex number.)

Discussion

We believe these definitions model the specification and execution of object software with

quite high fidelity. Objects have identities (unique names), types, state, and behavior; classes are sets

of objects that share some well-defined characteristics. Everything that can “have a value” is an

object. Objects of type ~ have values of an extremely simple  data type, while objects of other types

cent ain other, simpler objects (i .c., arc literal] y supcrsets  of them) and can therefore be thought of as

having values of arbitrarily complex abstract data types; the objects contained in a given object can be

thought of as its “slots” or instance variables.
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The arrival of input symbols models the passage of time, and the manner in which the state of

an object  system changes over time (as symbols arrive) is dictated by a transition function that

convincingly simulates causation. Thus, through the linkage mechanism, the state of one object can

be thought of as “causing” changes in the states of other objects; this in turn can be viewed as flow --

or communication -- of control and data among objects in the system. An object whose m instance

variable has the value e in a given state can easily be considered “inactive” in that state, in the sense

that the values of its other instance variables of type ~ remain unchanged over time (i.e., in the course

of the next state transition) unless modified by linkage from the object’s immediate container or a

peer. This in turn invites us to think of a change in the value of an object’s m instance variable from

e to some non-empty string as an “activation” of that object -- in other words, the initiation of the

method whose name is the new value of the m instance variable.

It might reasonably be asked why a theory of objects should be based on deterministic finite

automata rather than more powerful structures, such as Turing machines. Our answer is that DFAs arc

extremely simple and easily grasped, and they seem to be sufficient. The goal of this work, after all,

was to develop a formal model of object-oriented software for digital computers, which is a finite

problem domain. The computations we undertake using objects might well involve values of infinite

precision, such as 1/3;  however, whenever we use a digital computer to perform any such computat  ion

wc can only use finite representations of these values, either approximations (such as .3333333333 for

1/3) or symbols (such as “1/3”, n, etc.), both of which take the form of finite-length strings of symbols

from some alphabet. Therefore the number of objects we use and the number of possible states each

object can actually enter necessarily remain finite.

“Finite” need not, of course, mean “small”. Even an object gn of the simplest type, t, will have

as many possible states as the number of strings in A; if A is limited to “ASCII strings of fewer than

256 symbols”, g. can enter any of 21792 states. The aggregate transition function for the most trivial
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type of which g. is an attribute is certain to be very large, but still finite.

Parallelism and distribution

All objects other than those of type ~ have m instance variables and can therefore, potentially,

be concurrently active. That is, this model of object software execution is inherently parallel, wilh the

limit on the parallelization  of a given object system being one processor per non-~ object, As such, the

model encourages object software technology that exploits massively parallel processing

architectures. Implementation on non-parallel hardware of software built on this model would involve

dc-parallclizing it, e.g., in a manner analogous to multitasking on single-processor computers.

As it is inherently parallel, software built on this model is also inherently distributable. Given

an object system of type T, not only could all non-~ objects in the characteristic design of T conceiv-

ably be instantiated on different machines (the familiar “distributed object system” approach, where

“top-level” objects are typical] y implemented as operating system processes, tasks, or threads) but also

the objects contained

“distributed object”.

in any such object could be similarly distributed, making that object a true

Object interaction

The decision to support exhaustive parallelization  and object distribution, together with a

commitment to bulletproof encapsulation of object data, dictated the constraints imposed on linkage

within a type.

Data can be inserted into or extracted from an object of t ypc other than t (i.e., the object’s state

may bc altered or interrogated) only by initiating the methods defined in the method list of that
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object’s type -- that is, by causing the object’s method inslance  variable and, possibly, one of its

argument instance variables to change value and then examining one of its result instance variables.

(Strictly speaking, only a single argument per method invocation is supported. However, this

argument could be of any arbitrarily complex type and therefore could be of a type that includes any

number of unrelated argument objects of various types; explicit multiplicity of method arguments

might well be offered by a specific language implementation of this model, but it is not an object

model concept.)

This method initiation scheme relies completely on the linkage of the invoking object’s state

elements to those of the t argct object, The members of the characteristic design of an object g~ are

invisible to the transition function of every other object in the object system, including the object gA

within which g~ is immediately contained; that is, g~ is fully encapsulated. The type specification of

which g~ is a characteristic design element can, however, link other members of its own characteristic

design to the method and arguments of gA (as enumerated in gA’s aggregate interface) and can sinlilar-

ly link members of the characteristic design of object gc, which is a peer of gA. No other object gll in

the object system can have any direct access whatsoever to g~: if gH were a peer or container of gA,

then such access would violate the encapsulation of gA (i.e., would constitute access to the design of

gA rather than to its interface); if g~l were contained within gA, its type specification couldn’t link

anything to any attribute of gA because objects of gtl’s type need not necessarily be contained only

within objects of gA’s type.

For simplicity, only a single link to a given method, argument, or result is permitted. If n~ulti-

ple links were allowed it would be necessary to impose some sort of arbitration scheme on an already

complex plan in order to resolve conflicts arising from concurrent attempts to change the value of a

given method or argument instance variable in different ways. Most real-world implementations of

software built on the object model automatically avoid the problem by virtue of the Von Neumann
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# architecture of the hardware they run on: since nothing truly happens concurrently anyway, no conflict

is possible. In effect, the constraints on linkage achieve this arbitration structurally without restricting

parallel execution: a given object can only be activated (its method instance variable set) from one

other object, either the one that immediately contains it or one of its peers.

By itself, however, this arbitration is too severe, Objects that exist merely as repositories for

the data of their immediate containers can reasonably be insulated from activation by any peer, but in

many cases an object may need to serve data to (or accept data from) any number of its peer objects,

Some more elaborate arbitration scheme is still nccdcd;  we propose one that is constructed from

objects rather than built into the model itself,

The scheme essentially queues peer-to-peer communication by adding more peer objects, of

two types: port and router. The type “port” is defined by (port, (E, I, N, D, L, A, Z)) where:

E = {receive, erase)

I = {(receive, (~, ‘t)), (erase, (z, ~))}

N=$

D=+

L=$

A=$

Z = {(({(m, receive), (ad, x), (r-d, y), (s, 7,)

{(m, erase), (ad, e), (rd, x), (s, z)])

, a),

a~Z,x~A,y~A,z~A)

u {(({(m erase), (~~j x), (~, Y), (s, z)}, 0

{(m,e),( ad,x),(r,e),(s,z) )):ac Z,x= A,y= A,z= A }

When a port’s “receive” method is initiated, it simply copies its argument to its result and changes
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method to “erase”; its “erase” method merely erases the port’s result attribute and deactivates the port,

enabling it to receive another string.

The formal definition of a message router for a given object system would be too lengthy to

present here. Informally, for each peer object in the system to be connected through the routing

mechanism (called a “client”), the router has three ~ attributes: one is linked to the d attribute of an

“inbound” port (a peer of the router) that the client uses to send messages to the router, while the other

two arc linked to the method and ad argument of an “outbound” port that the client uses to receive

messages from the router; one inbound port and one outbound por[ are provided for each client, The

router also has a “message queue”, a I attribute whose value at any moment is the concatenation of all

messages not yet delivered to their destinations. The client, in turn, has attributes linked to the method

and ad of its inbound port and another attribute linked to the rd attribute of its outbound port.

When the client wants to activate a peer client it puts in the ad attribute of its own inbound port

a message, a string formed by concatenating the name of the client the message is to go to, the name

of the client sending the message, some string that uniquely identifies the message itself (for reference

in handling a reply to this message), the name of the method to activate, and a string representation of

the argument to pass to it; the client also changes the method of that port to “receive”. (The client must

wait briefly if the port is currently active.) The port copies the message to its result and erases its

method so that it can receive another message. Meanwhile, on every transition the router object:

1. Appends to its message queue all non-null messages in the rd attributes of all of its

inbound ports.

2. For each inactive outbound port, puts into the port’s ad attribute the first message in the

message queue destined for the corresponding client, removes that message from the queue,

and changes the method of the port to “reccivc”.
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All clients are perpetually active. On every transition, in addition to whatever else it is doing, every

client appends to its own queue of unhandled messages the contents of the rd attribute of its outbound

port. When a client finishes processing a given message it begins processing the next one in its queue

or goes into a state in which it is waiting for a message to arrive.

Note that this sort of object interaction readil y supports parallel processing in arbitrary object

distribution patterns. It is in general “slower” but more powerful than raw instance variable linkage:

transmission of any message consumes at least 4 “clock ticks” (state transitions) rather than 1, but the

dcvicc enables any object to communicate not just with one single other object but with all of its peers,

all the objects it immediately contains (a pair of ports could additionally be provided to enable the

container of the message router to communicate with all of the router’s clients), and the object that

immediately contains it. Note also that the arguments and results of ports could bc of types other than

I; for example, a port could have one argument for each type of argument T that could be passed from

onc client to another, where the design of this pori argument includes ~ attributes for the message ID,

the names of destination and source objects, and the method name, together with a T attribute for the

argument of the message. This would enable static type checking with reference to the receiving

clients’ interfaces. (The simpler approach was presented above for the sake of brevity.)

We suggest that the differences between peer-to-peer message exchange as described here and

direct communication with immediately contained objects are so profound that they should be referred

to by different terms. We propose to call the former “message passing” and the latter “method invoca-

tion”. This diverges somewhat from current practice in most object technology implementations,

which normally use the terms interchangeably to refer to what are, in fact, function calls. We believe,

though, that the use of the phrase “sending a message” in the object model should agree as closely as

possible with the everyday notion of composing a message -- a data structure with an integral,

independent existence -- and transmitting it through some sort of communications medium.
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inheritance

Apar[ from containment of objects of various types (which models “has a“ relationships), the

major mechanism for code re-use in object-oriented software is inheritance, the modeling of “is a“

relationships by defining a ncw type as an extension of one that was previously defined. In the mode]

presented here, each member of a characteristic ancestry is a single line of inheritance; multiple

inheritance results from defining multiple ancestors.

The aggregate personality of each object is fixed at the time the object system begins to

operate, However, multiplicity of personae of fluctuating influence within a single ancestor would

enable various types of dynatnic  multiple inheritance. As promised earlier, we defer a full description

of this mechanism for a later paper, but bricfl y:

We can relax the constraint on ancestors to allow multiple personae.

We can stipulate that every type’s implicit design additionally contains one

“membership” attribute for each persona in the t ype’s aggregate pcrsonalit  y, and we

can make transitions inherited from the personae conditional on the values of those

attributes.

We can add transitions that alter the values of membership attributes in response to

changes in other attributes’ values.

In short we claim that dynamic inheritance schemes (as in [6]) can be clearly articulated within

the framework of this model just by including all potential personae in the ancestry of a t ype and

letting their influences vary over time. We suspect that the notion of predicate classes [7] can bc

similarly formalized, by representing predicates as sets of resolved state space c]cments  and adding

transitions that alter the values of membership attributes in response to those predicates. Moreover,
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wc plan to consider the impact of allowing membership attributes to have “fuzzy” values, potentially

making a single object partially a member of multiple mutually exclusive classes at once; this may be

a straightforward way to conceive of “fuzzy” object-oriented software.

The inheritance mechanism modeled here does differ in several significant ways from that

which is implemented in many object-oriented programming languages,

1. Citation of the same type in multiple ancestors -- that is, repeated inheritance --

always results in the “sharing” of the redundantly cited types and the merging of their

attributes. We believe this best reflects the manner in which such conflicts are resolved

in real-world classification schemes. For example, if we say that a money-market

account is both an investment and a checking account, both of which are regarded

bank as credit accounts, we would expect a money-market account to have only a

)y a

single account number and a single owner, even though every credit account has a

distinct number and owner.

Note that this mechanism makes it difficult to use multiple inheritance to estab-

lish multiple involvements in the same type of relationship, e.g. to model a Taxpayer’s

N employment situations by inheriting N times from an Employee type rather than

containing N references to Position objects. While this could bc considered a defect,

we regard it as a feature; we believe it encourages more natural and familiar modeling

structures.

2. The sets of qualified attribute names contributed by all members of a type’s

aggregate personality y must be disjoint; attribute name clashes are simply proscribed,

Again, this seems consistent with the real world. If checking accounts are charged

services fees at some rate per check written and investments are credited with interest
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at some rate per dollar of minimum balance, we would expect different terms to be used

for these two different “rates” -- perhaps pcrCheckCharge and interestRatc.

3. . Since the method lisls of all members of a t ype’s aggregate ancestry must like-

wise be disjoint, there is no notion of the overriding of methods. That is, a type maybe

regarded as a refinement or extension or specialization -- a “subtype” -- of its ancestor

type(s), but no conflict between the methods of a subtype and those of its ancestors is

permitted. Once again, we believe this best reflects our real-world expectations of

classification schemes, For example, a snake is a kind of reptile; a python is a kind of

snake. We could say that a snake is a legless carnivorous reptile that kills its prey by

injecting it with poison through a bite, and that a python is a snake except that it kills

by constriction rather than poison, but we don’t. Instead, wc say nothing about

predation when we talk about snakes in the abstract (though we do still say they’re

legless carnivorous reptiles), we subclassify snakes into poisonous and nonpoisonous

varieties, and we say pythons are nonpoisonous snakes. This latter approach ensures

that we know something reliable just from knowing how pythons are classified, and

that this classification doesn’t tell us something unreliable that we can only get straight-

ened out by knowing specific information about pythons. Our definition of subclass

ensures that if X is a subclass of Y then everything that is true of the behavior of Y

objects is also true of X objects yvithout  exception.

4. Many implementations of object technology regard an object as an “instance”

of a class. In the context of our model one might say that an object is an instance of a

single, specific type, which completely defines its structure and behavior (that is, adopt

the terminology “instance of type T“ as an alternative to “object of type T“). One might

also observe that a given object is a meml)cr  (not an instance) of the class correspond-
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ing to the object’s type, but it may also be a member of many other classes. By the

same token, it may be impossible for any member of a given class to be an instance of

the type of the same name, because that type may not be viable. For example, a given

object might be a” 1985 Toyota Tercel hatchback” but it is also an “automobile” and an

“industrial product”; each of these classifications is correct, but only the first -- the type

-- provides enough information to instantiate the object. “Industrial product” is a

non-viable type, in that no one knows how to make one in the absence of more detailed

specifications.

Instance variables defined in the characteristic designs of an object’s inherited personae are

encapsulated just as are those of the object’s own characteristic design, but the invocation of a method

inherited from an ancestor is different from the invocation of the methods of contained objects.

Because the inherited personae of an object gA, of type T, are not contained within gA but arc instead

integrated with gA (that is, they are other aspects of the nature of gA itself, not distinct objects), they

do not have separate method variables. Object gA performs method Xyz inherited from its ancestor

type Q mere] y by setting the variables of arguments as necessary and then changing gA’s own method

to Xyz; although the characteristic transition function of T (gA’s type) docsn’t know how to respond

to Xyz, the characteristic transition function of gA’s Q ancestor does.

Typically, Xyz will bc invoked from within some other method of gA which should be resumed

when Xyz terminates, This continuity is made possible by the method stack instance variable. Before

switching its method to Xyz, gA can prepcnd  the current method name, with some sort of delimiter, to

the method stack; when Xyz terminates it can set the values of result instance variables, then pop the

prefix of the method stack and change method to this prefix rather than e, putting the object back in

the state it was in before Xyz was called (aside from changes resulting from Xyz). When the logic of

a method is modularized by some mechanism such as a “phase” attribute, the current phase is autonlat-
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ically resumed when Ihe method resumes; the calling of Xyz cannot have affected the phase because

phase is private to the characteristic design of T.

The method stack also makes it possible for a descendant to invoke ancestor capabilities that

arc not offered to the object’s peers or immediate container (in C++ terminology, “protected”

methods). Although all methods are public, a given method of an ancestor type could inspect the

prefix of the method stack to determine how to proceed: if that prefix was not, for example, a phase

number prepcndcd  to the stack by a descendant after the descendant’s own method name was prepend-

cd, the ancestor method would realize that it was being invoked by some other, unauthorized object

and the method could simply terminate. Since the method stack is private to the members of the

aggregate ancestry of an object, no cxterna] object can affect its contents.

Just as a descendant can invoke a method of onc of its ancestors, an ancestor can invoke a

method that must be provided by its descendant -- a “pure virtual method”. Types whose aggregate

transition functions include such pure virtual method invocations are non-viable types (in C++ terms,

“abstract classes”). Such types can bc the ancestors of subtypes, but by definition no attribute of any

design can bc of a non-viable type, and a non-viable type cannot be used to construct an object system.

Pol ynm-phism

Object systems built on this mode] can directly exhibit some varieties of polymorphism [8] but

not others:

Overloading: Clearly, two different types may declare methods of the same

name (provided the two types are not in the same aggregate ancestry). Initiating this

method within objects of the two types may yield very different results.

Coercion: An object is always of a single, invariant type; the model includes no
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notion of “coercing” an object oft ypc X into type Y to satisfy the interface of a method,

and clearly an argument value of type X cannot be presented directly to a method M

that obtains its input from an a instance variable of type Y. If X is a subtype of Y,

however, it should be straightforward to extract the values of the Y instance variables

embedded in the X argument value and load them into the Y argument. The same

would be true of argument values of types W, V, etc., provided all of these types were

subtypes of Y. A language implementation that, in effect, performed this extraction

and loading transparently would have provided a coercion facility.

inclusion polymorphism: Two objects may be instances of different types but

members of the same class, defined by a common ancestor type that has in its interface

a given method. Initiating that method within each of the two objects may yield either

the same result or different results, depending on the states of the objects and on wheth-

er or not the method is virtual, i.e., declared in the ancestor but defined (perhaps in

different ways) in the descendants. Alternatively,  given multiplicity of persona within

an ancestor, the execution of a given method by a given object might change over time

as the influences of its personae varied.

Parametric polymorphism: In this model, the names of all methods are unique

and are therefore sufficient for the purpose of method selection. However, a language

implementation of the model might well permit different methods taking different

types of argument to have the same name externally and make them internally unique

by appending argument type labels to the name.

instantiation, destruction, persistence, garbage collection
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Note that nothing in the exposition above indicated how objects might be created and deleted.

The reason for this is that the creation and deletion of objects would violate the model: by definition,

they already exist -- one pcr member of the aggregate design of the type specifying the object system

they belong to.

Although this concept is somewhat foreign to contemporary object technology, it’s not

completely unfamiliar. In the real world we may say that such things as loyalty, Huckleberry Finn,

and the assassination of the Archduke Ferdinand “exist”: even though they occupy no physical space

they have the capacity to shape events. Similarly, a temporary linked list in an object system may be

an object that no longer occupies physical memory, but it still “exists” in the source code for the

program. The determinism in software is what makes it testable, and in any truly deterministic system

whatever is possible is inevitable. Everything that could exist does (in some sense) already exist,

although at any particular moment it may have no physical manifestation,

The determinism of the model presented here maps easily to practical software determinism: if

wc merely add the attribute “physical memory location” to the design of an object and leave that

attribute null until wc “create” the object (in a practical implementation, allocate physical memory to

it) -- and reset it to null when we “destroy” the object -- we retain 1

sacrificing compatibility with implementation strategies,

This leaves open the questions of how to allocate physics”

leoret  ical  consistency without at al 1

memory and how and when to

release it. Since theoretically all objects in an object system always exist, “object persistence” and

“garbage collection” are strictly implementation issues. Ideally all objects would always be persistent

except when they were explicitly “destroyed” for some functional reason, at which time the release of

the space they occupy would be straightforward. Resh-ictions  on persistence ahd complex

mechanisms for the implicit, automatic destruction of objects when no more references to them remain
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are an unfortunate artifact of hardware limits.

Metaclasses,  Reflection

Throughout its operation, the composition of an object system produced according to this

model remains fixed. This unquestionably limits the flexibility of such a system but, we believe, not

fatally.

The population of an object system (the number of objects of all types) is fixed by its aggregate

name space and design. However, as discussed above, the practical implementation of any such

system can dynamically allocate and free the physical memory occupied by objects in complete accord

with the model.

The heritage of every object is fixed by its aggregate ancestry. However, varying the influenc-

es of various personae over time -- including those whose original influence may have been zero -- can

have effects that would be indistinguishable from the dynamic acquisition of ancestors. (A specific

implemcntat  ion of variable persona influence could, of course, defer allocation of physical space for a

persona’s instance variables until the persona’s influence becomes non-zero.)

Finally, the structure and behavior of each individual object are fixed by its characteristic

method list, interface, design, linkage, and transition function. Since some object technologies

provide “metaclass” objects to enable class or type definitions to change while software is executing

(as discussed in [9]), it would seem that a DFA cannot model all object system in~plenwntations,  We

suggest, though, that type redefinition in fact occurs in a “development” universe that is external to the

object universe of the operating object system -- i.e., that it is within the scope of the “object-oriented

software engineering” paradigm but out of the scope of the object model itself.

For this reason, the model presented here includes no notion of metaclasses  or “class methods”,
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“class data”, etc. By definition, an object is not a class, a class is not an object, and a type is neither;

there is no infinite regress of objects and classes, because classes and types are not instantiation of

anything else.

This is not to say that runtimc modification of class definitions is undesirable or impractical,

only that it is an implementation feature that is external to the object model. And though it is external

to the model, it is not incompatible with it. The model is in no way violated if we “stop the tape” of

input symbols of an operating object system X, putting the DFA in a final state (i.e., whatever its state

currently happens to be), We can then copy all relevant state elements from that final state into the

starting state Sw of a new object system W that is a modification of the one that just stopped (“relevant”

elements being those ordered pairs (n, v) such that (n, z) ● Dw); set to e the values of all (n, v) in Sw

such that (n, ~) ● Dw but (n, ~) @ Dx; and then start W. Since this happens while no input symbols

arc being processed, in terms of the model it doesn’ even consume any time.

Conformance to object software principles

We believe the model presented here generally conforms to widely accepted principles of good

object system form. For example:

It satisfies B. Meyer’s “open/closed” principle [10], in that types are open for extension

but closed for purposes of inheritance and containment. In fact, because a subtype can extend

the functionality of an ancestor type but cannot modify [override] it, the “closed-ness” of types

is more severe than that which is advocated by Meyer. The intent is the converse of Meyer’s

reusability requirement [11 ]: not only should a feature be moved as far up in the inheritance

hierarchy as possible, to enable the broadest possible sharing by descendant classes, but also it

must be moved as far down in the hierarchy as necessary in order to ensure its applicability to
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all descendant classes without exception.

It conforms to the Liskov substitution principle [12]: if U is a subtype of T, then an

object of type U may bc substituted for an object of type T in any object system X without

changing the behavior of the system, This is due to the constraint that the method lists of all

members of an aggregate ancestry must be disjoint: since U’s transition function includes all T

transitions implementing the methods in T’s interface, and since the behavior of T objects in X

must have been limited to the methods in that interface, whenever a replacement object of Iypc

lJ in X is activated it must be by some request to perform some method of T, which will be

handled by the inherited T transitions.

If message passing is used for peer-to-peer object interaction, then it enforces

compliance with the letter, if not necessarily the spirit, of the Law of Dcmeter [1 3]: the nleth-

ods defined for a client object gA of a given type can directly invoke the methods only of

objects contained within gA, the argument to the method (since all arguments are actually

hc

objects contained within gA), and gA itself. Functionally, however, gA can still send messages

to any number of peer objects of various types, so the decision on how zealously to comply

with the Law remains mostly the responsibility of the programmer.

Application

One usc to which a formal theory of objects might initially be put is evaluation of the many

object-oriented programming languages currently available to the developer. In the context of the

model discussed here, an object-oriented programming language is simply a notation for specifying

t ypcs. A language is “complete” if it can bc used to specify any type whatsoever (given that the type’s

A is compatible with the language); it is “convenient” to the extent that it makes type specifications
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undertaken for a given purpose easy to write and easy to read. The compiler for such a language is

“sound” if the operations of the execut ables it produces accurate] y predict the state transitions of the

corresponding types, and vice versa; it is “efficient” to the extent that it compresses the DFAs

produced by the language into forms that can be executed on physical computers within cost and time

constraints. (As the example definition of “number” above suggests, standard set notation can be

regarded as a complete but relatively inconvenient object-oriented programming language for which

no compiler exists,)

Conclusion

The motivation for this work was the need for some formal theoretical framework that would

facilitate the clear articulation of object model concepts. Much in the model statement presented here

may be open to challenge. Nonetheless, we hope it will contribute to the development of that

framework.
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